Continuum mechanics  

Laws


The combined gas law is a gas law that combines Charles's law, Boyle's law, and GayLussac's law. There is no official founder for this law; it is merely an amalgamation of the three previously discovered laws. These laws each relate one thermodynamic variable to another mathematically while holding everything else constant. Charles's law states that volume and temperature are directly proportional to each other as long as pressure is held constant. Boyle's law asserts that pressure and volume are inversely proportional to each other at fixed temperature. Finally, GayLussac's law introduces a direct proportionality between temperature and pressure as long as it is at a constant volume. The interdependence of these variables is shown in the combined gas law, which clearly states that:
“  The ratio between the pressurevolume product and the temperature of a system remains constant.  ” 
This can be stated mathematically as:
where:
For comparing the same substance under two different sets of conditions, the law can be written as:
The addition of Avogadro's law to the combined gas law yields the ideal gas law.
Boyle's Law states that the pressurevolume product is constant:
Charles's Law shows that the volume is proportional to the absolute temperature:
GayLussac's Law says that the pressure is proportional to the absolute temperature:
The algebraic manipulation cannot be done directly because Boyle did his experiments with constant temperature, Charles did them with constant pressure and Lussac did them with constant volume, therefore a more exact interpretation of the prior equations would be:
Keeping this in mind, to carry the derivation on correctly one must imagine the gas being altered by one process at a time say you give it to boyle first to change the pressure and volume. Therefore:
Then you give it to Charles to change the volume and temperature:
Then you finally give it to Lussac so he can change both the pressure and temperature to get to:
From here on its just algebra:
The combined gas law can be used to explain the mechanics where pressure, temperature, and volume are affected. For example: air conditioners, refrigerators and the formation of clouds. Also used in fluid mechanics and thermodynamics.