Portal:Mathematics

Portal:Mathematics

https://en.wikipedia.org/wiki/Portal:Mathematics
From Wikipedia, the free encyclopedia

The Mathematics Portal


Mathematics is the study of numbers, quantity, space, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.

There are approximately 31,444 mathematics articles in Wikipedia.

Selected article


LampFlowchart.svg
Flowcharts are often used to represent algorithms
Image credit: User:Booyabazooka

An algorithm is a procedure (a finite set of well-defined instructions) for accomplishing some task which, given an initial state, will terminate in a defined end-state. The computational complexity and efficient implementation of the algorithm are important in computing, and this depends on suitable data structures.

Informally, the concept of an algorithm is often illustrated by the example of a recipe, although many algorithms are much more complex; algorithms often have steps that repeat (iterate) or require decisions (such as logic or comparison). Algorithms can be composed to create more complex algorithms.

The concept of an algorithm originated as a means of recording procedures for solving mathematical problems such as finding the common divisor of two numbers or multiplying two numbers. The concept was formalized in 1936 through Alan Turing's Turing machines and Alonzo Church's lambda calculus, which in turn formed the foundation of computer science.

Most algorithms can be directly implemented by computer programs; any other algorithms can at least in theory be simulated by computer programs. In many programming languages, algorithms are implemented as functions or procedures.

View all selected articles Read More...

Selected picture

illustration of a closed loop (a circle) and progressively more knotted loops
Credit: Jkasd

This is a chart of all prime knots having seven or fewer crossings (not including mirror images) along with the unknot (or "trivial knot"), a closed loop that is not a prime knot. The knots are labeled with Alexander-Briggs notation. Many of these knots have special names, including the trefoil knot (31) and figure-eight knot (41). Knot theory is the study of knots viewed as different possible embeddings of a 1-sphere (a circle) in three-dimensional Euclidean space (R3). These mathematical objects are inspired by real-world knots, such as knotted ropes or shoelaces, but don't have any free ends and so cannot be untied. (Two other closely related mathematical objects are braids, which can have loose ends, and links, in which two or more knots may be intertwined.) One way of distinguishing one knot from another is by the number of times its two-dimensional depiction crosses itself, leading to the numbering shown in the diagram above. The prime knots play a roll very similar to prime numbers in number theory; in particular, any given (non-trivial) knot can be uniquely expressed as a "sum" of prime knots (a series of prime knots spliced together) or is itself prime. Early knot theory enjoyed a brief period of popularity among physicists in the late 19th century after William Thomson suggested that atoms are knots in the luminiferous aether. This led to the first serious attempts to catalog all possible knots (which, along with links, now number in the billions). In the early 20th century, knot theory was recognized as a subdiscipline within geometric topology. Scientific interest was resurrected in the latter half of the 20th century by the need to understand knotting problems in organic chemistry, including the behavior of DNA, and the recognition of connections between knot theory and quantum field theory.

Did you know...

Did you know...

                         

Showing 7 items out of 71

WikiProjects

The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

WikiProjects

Project pages

Essays

Subprojects

Related projects

Things you can do

Categories


Topics in mathematics

General Foundations Number theory Discrete mathematics
Nuvola apps bookcase.svg
Set theory icon.svg
Nuvola apps kwin4.png
Nuvola apps atlantik.png


Algebra Analysis Geometry and topology Applied mathematics
Arithmetic symbols.svg
Source
Nuvola apps kpovmodeler.svg
Gcalctool.svg

Index of mathematics articles

ARTICLE INDEX: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9)
MATHEMATICIANS: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Related portals

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database



Related Blogs

  • Did not find any related blogs!
Loading ...