A New Way of Squaring.....

Squaring: A New Way

http://www.piyushgoel.in

copyrighted piyushgoel

If we square 11, it is very simple put 1(21)(12)get 121 same as square 12 put 1(22)(22) get 144 again for 13 we get 169 and for 14 we get 1 8 16=196 and so on.

When we go deep, we find that there is symmetry of two types

(2,4,6,8,10,12 ,14,16,18,20 …. Diff is always 2) &

(1, 4 , 9 ,16,25,36,49,64,81,100 ) diff. is 3 5 7 9 11 13 15 17 19 and diff. of 3 5 7 9 11 always 2, so there is true symmetry .

Up to 19 it is right but at 20 how we can put 1 20 100 just because of symmetry.

 

  • 112  = 1 2 1
  • 122  = 1 4 4
  • 132  = 1 6 9
  • 142  = 1 8 16 =  100 + 80 + 16 = 196
  • 152  = 1 10 25 = 100 + 100 + 25 = 225
  • 162  = 1 12 36 = 100 + 120 + 36 = 256
  • 172  = 1 14 49 = 100 + 140 + 49 = 289
  • 182  = 1 16 64 = 100 + 160 + 64 = 324
  • 192  = 1 18 81 = 100 + 180 + 81 = 361
  • 202  = 1 102 = 1 20 100 = 100 + 200 + 100 = 400
  • 212  = 1 112 = 1 22 121 = 100 + 220 + 121 = 441
  • 222  = 1 122 = 1 24 144 = 100 + 240 + 144 = 484
  • 232  = 1 132 = 1 26 169 = 100 + 260 + 169 = 529
  • 242  = 1 142 = 1 28 196 = 100 + 280 + 196 = 576
  • 252  = 1 15= 1 30 225 = 100 + 300 + 225 = 625
  • 262  = 1 162 = 1 32 256 = 100 + 320 + 256 = 676
  • 272  = 1 17= 1 34 289 = 100 + 34 + 289 = 729
  • 282  = 1 182 = 1 36 324 = 100 + 360 + 324 = 784
  • 292  = 1 192 = 1 38 361 = 100 + 380 + 361 = 841
  • 302  = 1 202 = 1 40 400 = 100 + 400 + 400 = 900

There is a symmetry, from here I got a method, which is shown as below for 31, 41, 51 and so on.

  • 312  =  1 212 = 1 42 (1 11)2  =  1 42 (1 22 121)

=  961  = 121 + 220 + 100

= 441 + 420 + 100 = 961

  • 412  = 1 312 =  1 62 (1 21)2 =  162 (1 42) (1 11)2
=  1 62 (1 42) (1 22 121)

=  1 62 (961)  = 961 + 620 + 100 = 1681

  • 512  = 1 412 = 1 82 (1 31)2 =  1 82 (1 62) (1 21)2

=  1 82 (1 62) (1 42) (1 11)2

=  1 82 (1 62) (1 42) (1 22 121)

= 1 82(1681)  = 1681 + 820 + 100 = 2601

  • 612  = 1 512  = 1 102 (41)2  = 1 102 (1 82) (1 31)2

=  1 102 (1 82) (1 62) (1 21)2

=  1 102 (1 82) (1 62) (1 42) (1 11)2

=  1 102 (1 82) (1 62) (1 42) (1 22 121)

= 1 102 (2601) = 2601 + 1020 + 100 =  3721

  • 712  = 1 612  =  1 122 (1 51)2  =  1 122 (1 102) (41)2

= 1 122 (1 102) (1 82) (1 31)2  =  1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122  (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

= 3721 + 1220 + 100  =  5041

  • 81 =  1 712  =  1 142 (1 612)  =  1 122 (1 51)2  =  1 122 (1 102) (41)2

= 1 122 (1 102) (1 82) (1 31)2  =  1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122  (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

=  1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

=  5041 + 1420 + 100  =  6561

  • 912  = 1 812  =  1 162(1 712 ) =  1 142 (1 612)  =  1 122 (1 51)2

= 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2

= 1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122  (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

=   6561 + 1620 + 100  =  8281

  • 1012  = 1 912 = 1 182(1 812) =  1 162(1 712 )  =  1 142 (1 612)  =  1 122 (1 51)2

= 1 122 (1 102) (41)2 = 1 122 (1 102) (1 82) (1 31)2

= 1 122 (1 102) (1 82) (1 62) (1 21)2

= 1 122  (1 102) (1 82) (1 62) (1 42)(1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 11)2

= 1 122 (1 102) (1 82) (1 62) (1 42) (1 22 121)

= 8281 + 1820 + 100 = 10201

No corresponding comment


X
You’ve spoken and we’ve listened! We are excited to announce that the same great knowledge platform that you have come use and love over the years will be going through a rebrand and an upgrade. We believe that all good things don’t come to an end, but only evolve to be better. WikiOmni will now officially be called Knowpia. Please make sure your access is now directed to KNOWPIA.COM from all of your devices. In an effort to enhance the overall user experience, over the course of the next few months you will see a new and improved design layout with value-added features and advancements in functionality. Through extensive research & development, we know you will be happy with the new direction that we are taking to continue our vision to assemble the world’s largest platform of knowledge contributors. We thank you for taking this incredible journey with us!